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1.   INTRODUCTION 
Stellar scintillation, denned here generally as the inten- 
sity fluctuations of a plane wave after propagating from 
space to Earth, is typically quantified in terms of the ir- 
radiance variance at a point, on a telescope aperture, a/1 

= (I2)/(I)2 - l.1 In the regime of weak turbulence (i.e., 
(T;2 < 1), scintillation is well understood and described by 
Rytov's theory, where a/1 just depends on the total 
altitude-weighted turbulence along the propagation 
path2: 

35 exp 2.25£7'6sec11/6(</>) I   C;\h)hmAh 
Jo 

1.   (1) 

Here the refractive index structure constant C„2(/i) is a 
measure of turbulence strength at altitude h, d> is the ze- 
nith angle, and k is the optical wave vector's magnitude. 
However, in the regime of strong turbulence it is well 
known that the relationship between a/1 and trB

2 breaks 
down. Specifically, for 07 2 > 1 the irradiance variance 
saturates, that is, it reaches a peak (referred to as the 
strong-focusing regime) and then slowly decreases with 
increasing total turbulence.3 

Over the past decade considerable progress has been 
made in understanding the saturation of scintillation, in 
particular for horizontal propagation through homoge- 
neous turbulence. For example, the role of the inner 
scale has been elucidated4 and has been found to have a 
greater significance for spherical waves than for plane 
waves.'"' Additionally, the probability density function of 
irradiance has been numerically evaluated, and its devia- 
tions from a log-normal distribution have been studied. 
The situation is quite different with regard to stellar scin- 
tillation, however, where very little is known about satu- 
ration.   In large part this is because the irradiance vari- 

ance typically associated with stellar scintillation is small 
enough that Rytov's theory applies.' Nevertheless, de- 
viations from Rytov's theory can occur, especially at large 
zenith angles,8 and so it is reasonable to question how the 
saturation of stellar scintillation might differ from that 
associated with propagation through homogeneous turbu- 
lence. In particular, since expression (1) is no longer 
valid in the case of saturation, one might wonder whether 
cr/1 still depends on just the integrated turbulence along 
the entire propagation path or whether certain atmo- 
spheric regions play different roles in producing scintilla- 
tion. 

In the following sections, we consider this question by 
numerically simulating optical propagation through two 
distinct profiles of atmospheric turbulence. For one pro- 
file scintillation is dominated by turbulence in the tropo- 
pause, while for the other both tropopause and low- 
altitude tropospheric turbulence contribute to 
scintillation. In Section 2 we briefly discuss the numeri- 
cal simulation procedure and our vertical profiles of atmo- 
spheric turbulence. The results are presented in Section 
3, where the combination of high- and low-altitude turbu- 
lence is shown to be more effective in producing scintilla- 
tion in the strong-focusing regime than high-altitude tur- 
bulence alone. In Section 4 we explain this result by 
considering the relationship between a propagated field's 
lateral coherence length and its Fresnel length for the two 
different atmospheric profiles. 

2.   VERTICAL PROFILES OF ATMOSPHERIC 
TURBULENCE AND THE NUMERICAL 
PROCEDURE 
To describe the atmosphere's vertical turbulence profile, 
we employ a slightly modified version of the Hufnagel- 
Valley (HV) model1: 



C„2(h) = T{8.15 x 10-5Sus
2/i10exp[-(/i/1000)] + 2.7 

x 10"16exp[-(A/1500)] + Aexp[-(A/100)]}. 

(2) 

Here ys is a parameter in meters per second that controls 
high-altitude turbulence, and A accounts for boundary- 
layer atmospheric turbulence. (In the literature, vs is 
sometimes denned as the rms wind speed in the 5-20-km 
altitude range.1) T is a factor that scales a particular 
profile to higher and lower levels of turbulence and simul- 
taneously could account for the seciy6( <b) zenith-angle 
factor in expression (1). 

A particular profile of turbulence that is often used in 
studies of optical propagation through the atmosphere is 
the HV-21 profile: us = 21 m/s and A = 1.7 
X 10~um~2/3. Here, we examine this profile's influence 
on the saturation of scintillation by increasing T for a 
l-^m reference wavelength. In this way, we keep the 
relative shape of the profile constant, while increasing the 
level of integrated turbulence (i.e., aR

2). The altitude- 
weighted contribution of the HV-21 profile to stellar scin- 
tillation [i.e., C„2(A)A5/6] is shown in Fig. 1 for the specific 
case of aR

2 = 0.5, and it is apparent that both high- 
altitude (~11 km) and low-altitude (-1.4 km) turbulence 
contribute to scintillation.9 For comparative purposes, 
we have also considered a profile that we refer to as the 
high-altitude (HA) profile. For the HA profile, T = 1, 
and vs is varied to produce different levels of turbulence; 
A is somewhat arbitrarily set to 1.0 X HT13 m_2/3. 
Though the HA profile may appear somewhat artificial, as 
will be seen it provides a good countertype for the more 
realistic HV-21 profile. Basically, the idea behind the 
HA profile is to have a point of comparison that will allow 
us to better understand those features of a turbulence 
profile that play a significant role in stellar scintillation. 
The HA's altitude-weighted contribution to stellar scintil- 
lation is also shown in Fig. 1 for the case of <rR

2 = 0.5, 
and it is clear that scintillation in this case is influenced 
primarily by turbulence in the tropopause. 

Propagation through the turbulent atmosphere is stud- 
ied numerically according to standard methodology.10'11 

Briefly, we simulate three-dimensional wave propagation 
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Fig. 1. C„2(li)hs,B versus altitude for the Hufhagel-Valley 
model of atmospheric turbulence. For the HV-21 profile, A 
= 1.7 x 10"Mm"w, (.', = 21 m/s, and the strength of turbu- 
lence is varied by changing F (for the graph V = 3.85). For the 
high-altitude profile, labeled HA, A = 1.0 x 10 13m"M, F = 1, 
and the strength of turbulence is varied by changing the rms 
wind speed (for the graph o, = 47 m/s). Each profile shown in 
the figure yields cr^1 = 0.5. 

by placing a number, Ns, of thin random-phase screens at 
specific altitudes, A,. Prior to impinging on the ith 
phase screen, the optical field E(p, A ~) is given by 

E(p, A, ) = E0(p, hi )exp[i</>(p, ht )], (3) 

where p is a position vector in a plane perpendicular to 
the propagation direction (for the computations, the ze- 
nith angle is zero), and where E0 and <f> are real scalar 
fields. The phase screen imparts an additional random 
phase to this wave d (where the statistical properties of 9 
are determined by the characteristics of turbulence at ft,-), 
so that after propagation through the phase screen, the 
field becomes E(p, h*) = E0(p, Af )exp{i[«6(p, hp 
- ß(p, hj)]}. Taking the two-dimensional Fourier 
transform of E(p, h*), the field is propagated to the next 
screen under the Fresnel approximation,12 and after an 
inverse Fourier transform this becomes E(p,h~+1). We 
start from an initial monochromatic plane wave at an al- 
titude of 20 km, and the wave is propagated to a telescope 
aperture on the Earth's surface. More details on the nu- 
merical simulation may be found in Appendix A. 

A single realization consisted of plane-wave propaga- 
tion (\ = 1 /xm) from the lower stratosphere to the Earth 
through four 512 x 512 pixel phase screens of equal 
length. Depending on the simulation parameters, the 
phase-screen lengths ranged from 170 to 210 cm.13 For 
each simulation, we recorded the field intensity at the 
central pixel of a 25-cm-diameter telescope aperture,14 

and we determined the product of the central pixel's log 
amplitude with the log amplitude of all other aperture 
pixels. Additionally, we determined the aperture- 
averaged intensity of the propagated field for each simu- 
lation. A single computational run involved 3000 real- 
izations of atmospheric propagation, and four to seven 
runs were used to generate pooled estimates ° of irradi- 
ance variance. The log-amplitude correlation functions 
were evaluated from a single computational run of 15,000 
realizations. Though one could attempt to calculate cr/2 

using fewer simulations (for example, by treating each 
pixel from a single realization as a separate estimate of 
the intensity fluctuations), we chose a different approach, 
since the intensity fluctuations of neighboring pixels are 
correlated. Calculations were performed on a dual- 
processor 600-MHz DEC Alpha Server 4000, and a single 
realization required —18 s. 

As evidence of the numerical procedure's validity, Fig. 
2 shows the log-amplitude con-elation function [i.e., 
Bx(p)/Bx(0)] for the case of HV-21 turbulence with T 
= 1. Since the turbulence is relatively weak in this case 
(i.e., <rR = 0.11), the numerical results may be compared 
with Rytov theory, where 

Bx(p) = Air2k2      C„2(A) (0.033) |   J„(KP)K
[ 

o 
-11/3) 

X sin' 
*2A\ 

~2k 
K6K dA. (4) 

In writing Eq. (4), we have restricted ourselves to Kol- 
mogorov turbulence. The solid curve in Fig. 2 corre- 
sponds to the prediction of Eq. (4), and as one would ex- 
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Fig. 2. Circles, log-amplitude correlation function for the HV-21 
model with T = 1 (i.e., weak turbulence): r„ = 11.8 cm, and 
er/t1 = 0.11. Solid curve, prediction from Rytov's theory with 
Eq. (4). 

pect, the agreement between Rytov theory' and the 
numerical results is quite good. 

3.   RESULTS 
Our principal results are shown in Figs. 3 and 4, where 
«72 and the aperture-averaged irradiance variance (072) 
are shown, respectively, as functions of the Rytov stan- 
dard deviation <rR. Open circles in the figures corre- 
spond to the HV-21 profile, solid circles correspond to the 
HA profile, and error bars indicate the variance's stan- 
dard error as estimated from the four to seven computa- 
tional runs. (As a point of reference, we note that aR 

= 2 for the HV-21 profile can be attained by attributing 
I" solely to a 77° zenith-angle factor.) As a test, we per- 
formed several runs for a numerical model with five phase 
screens and found no statistically significant difference in 
the results. The dashed curve in Fig. 3 corresponds to 
a 1 = crR, and the solid curves are fits of the data to the 
empirical formula: 

or = ovU - exp[-(<rÄ
2/ff„2)]]. (5) 

Here cr„2 is a parameter that indicates both the level of 
saturation in the strong-focusing regime and the Rytov 
variance where saturation sets in. It should be noted 
that Eq. (5) is not based on any underlying theory of scin- 
tillation; rather, it is simply a convenient analytical form 
for discussion of the numerical results. 

Regarding Fig. 3, it is apparent that the two profiles 
display different saturation characteristics. Specifically, 
<xj2 for the HA profile in the strong-focusing regime is 
smaller than a2 for the HV-21 profile. In terms of Eq. 
(5) this may be summarized as <r0

2(HA) = 1.6 and 
IT„

2
(HV-21) = 2.5. Regarding Fig. 4, we have the alter- 

native finding that (<r2) in the saturation regime is 
smaller for the HV-21 profile and larger for the HA pro- 
file. These apparently contradictory results may be rec- 
onciled if the HV-21 profile produces a log-amplitude cor- 
relation function with a relatively short correlation 
length. A short correlation length implies not only sig- 
nificant amplitude fluctuations at a point from instant to 
instant (i.e., large 07 2 for the point intensity from realiza- 
tion to realization), but also a greater ability for the tele- 
scope aperture to average out amplitude fluctuations at 
any given instant (i.e., small (072)). Figure 5 shows the 
log-amplitude correlation functions for the two profiles in 

the case of crK = 4.8, and it is clear that the HV-21 profile 
has the shorter correlation length. Consequently, Figs. 
3-5 are self-consistent and result in two immediate con- 
clusions. First, the atmosphere's vertical turbulence pro- 
file has an important influence on the saturation of stellar 
scintillation. Second, the combination of high- and low- 
altitude turbulence is more effective in producing scintil- 
lation in the strong-focusing regime than high-altitude 

Fig. 3. Phase-screen calculation of irradiance variance o-;
2 ver- 

sus the Rytov standard deviation aR . Open circles, HV-21 
model; solid circles, HA model. Dashed curve, Rytov theory [i.e., 
expression (1)]; solid curves, Eq. (5) with a,,2 = 1.6 and a/ 
=  2.5 for the HA and the HV-21 profiles, respectively. 

Fig. 4. Phase-screen calculation of the aperture-averaged irra- 
diance variance (a2) versus the Rytov standard deviation a[t. 
Open circles, HV-21 model; solid circles, HA model. The tele- 
scope diameter in the simulations was 25 cm. 
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strong-focusing regime (i.e., <rR = 4.8): open circles, HV-21 pro- 
file; solid circles, HA profile. 



turbulence alone.   We present a physical explanation for 
these conclusions in the next section. 

4.   DISCUSSION 
As a way to explain scintillation qualitatively,16 turbulent 
eddies are often imagined as extremely long focal length 
lenses that randomly focus and defocus a coherent wave. 
For eddies of size I at an altitude h, the focal length varies 
like ±l'mlCn(h). Moreover, in the regime of weak turbu- 
lence, where the effects of the individual eddies are inde- 
pendent, the variance of the fluctuations scales like the 
number of eddies along the propagation path. Thus, not 
only do small eddies produce the greatest intensity fluc- 
tuations at the point of observation, but also there are 
more of them along the propagation path. Taken to- 
gether, these statements imply that the smallest-scale ed- 
dies dominate the production of scintillation. Of course, 
the smallest eddy that can efficiently focus or defocus the 
light in this fashion is constrained by diffraction, which 
limits the smallest-scale eddies of relevance for scintilla- 
tion to the Fresnel length. 

While the above description of scintillation is appropri- 
ate in the regime of weak turbulence, and in fact provides 
a semiquantitative rationale for the Rytov variance's 
form, it lacks an important subtlety. In the regime of 
strong turbulence a wave is perturbed by its propagation 
through the turbulent atmosphere before interacting with 
a Fresnel-scale eddy, with the consequence that this eddy 
must now focus or defocus a partially coherent field. Be- 
cause the lateral coherence length p„ of a propagated field 
decreases as the path-integrated turbulence increases, a 
point is eventually reached at which the coherence length 
becomes smaller than the Fresnel length. At this level of 
turbulence, the Fresnel scale eddies lose their ability to 
effectively focus or defocus the wave. Consequently, fur- 
ther increases in turbulence do not produce much in- 
crease in scintillation, and the irradiance variance satu- 
rates. 

In the present problem, as suggested by Eq. (1) and Fig. 
1, the most significant Fresnel length for scintillation is 
associated with the tropopause for both the HA and the 
HV-21 profiles. Consequently, scintillation should satu- 
rate when the field's coherence length after propagation 
from space to the tropopause becomes smaller than the 
tropopause Fresnel length [i.e., p„(h) < v'X/i = 10 cm, as- 
suming a l-/xm wavelength and a 10-km tropopause alti- 
tude]. Clearly, the HA profile has more stratospheric 
turbulence than the HV-21 profile. Thus, for the same 
degree of weighted, path-integrated turbulence from 
space to Earth (i.e., crR), the HA profile will always pro- 
duce a smaller coherence length at the tropopause, and 
this in turn implies that the HA profile will saturate at 
lower values of aR . 

This argument can be placed on a more quantitative 
footing by writing the coherence length at an altitude h 
for a wave propagating from space to Earth as l 

p0(h) 1.45 k2 |   Cn'
2(h')dh' 

h 

0.6      0.7 0.8     0.9      1.0     1.1 
Scintillation parameter, f 

1.3 

Fig. 6. Rytov variance parameterized by the scintillation pa- 
rameter /"as discussed in the text. Open circles, HV-21 profile 
with /"averaged over the tropopause; solid circles, HA profile with 
/"averaged over the tropopause; dashed curve, HV-21 profile with 
f averaged over the lower troposphere. For the tropopause- 
averaged curves, the HV-21 and the HA profile Rytov variances 
at f = 1 are in reasonable agreement with their respective re- 
values. 

Forming the ratio of p0(h) with the Fresnel length and 
then averaging over the tropopause region defines a 
scintillation-saturation parameter f: 

/"- 
hi Jh 

Po(h) 

J\h 
Ah, (7) 

(6) 

where h 2 and h 1 correspond to the top and bottom of the 
tropopause, respectively. When f is less than unity for 
some vertical turbulence profile, the tropopause coher- 
ence length is less than the Fresnel length, and scintilla- 
tion should saturate. Parametrizing the Rytov variance 
by/"and writing this as crR(f), we then expect a/2 to satu- 
rate at CTyj-(l). 

Figure 6 shows crR
2{f) versus /"for the HV-21 profile 

(open circles) and the HA profile (solid circles). As is 
clear from the figure, (TR

2
(1) for the HA profile is smaller 

than (TR
2(1) for the HV-21 profile, consistent with the ob- 

servation that er2 saturates at lower values for the HA 
profile. Moreover, we obtain aR

2( 1) = 2.5 for the HV-21 
profile and <rR

2'2(l) = 1.3 for the HA profile, which are 
values that are consistent with o-0'

2(HV-21) and rr0
2(HA), 

respectively. For completeness, the dashed curve in the 
figure shows crR

2 versus /"for the HV-21 profile, but now 
with f averaged over the lower troposphere (i.e., 1-2.5 
km). Comparison of the two HV-21 curves illustrates, 
that saturation is primarily associated with the tropo- 
pause for this profile, even though Fig. 1 suggests that the 
lower troposphere plays a significant scintillation role in 
the regime of weak turbulence. 

5.   SUMMARY 
In this work we investigated the relationship between 
stellar scintillation in the strong-focusing regime and the 
atmosphere's vertical turbulence profile. Specifically, us- 
ing the Hufhagel-Valley (HV-21) model of atmospheric 
turbulence, we compared the irradiance variance for the 
standard HV-21 turbulence profile with a2 values ob- 
tained from what we termed a high-altitude (i.e., HA) pro- 
file.    In the HV-21 profile, scintillation arises from both 



low- and high-altitude turbulence, while in the HA profile 
scintillation is dominated by high-altitude turbulence 
alone. Comparing the 072 values for the two profiles, 
which were obtained by numerical simulation, we found 
that in the strong-focusing regime the vertical profile of 
turbulence plays an important role in scintillation. 
Moreover, we found that the combination of high- and 
low-altitude turbulence was more effective in producing 
scintillation in the strong-focusing regime than high- 
altitude turbulence alone. These results were explained 
as a consequence of an optical wave's decoherence, rela- 
tive to the tropopause Fresnel length, as it propagates 
through the lower stratosphere. 

APPENDIX A 

In the numerical simulation of optical propagation, the 
placement and strength of the phase screens is deter- 
mined by a Gaussian quadrature procedure.20 Basically, 
since we need to replace the continuous vertical turbu- 
lence profile with a set of discrete turbulent layers, we ap- 
proximate the integral of C2 with a discrete sum of Ns 

phase screens by using Gauss-Legendre quadrature:21 

C,2(h)dh = 
0.3 km 

C2(h)dh + C„2(/i)d/i 
0.3 km 

N. 

= aiCn
2(hx) + 2 o,-C„2(Ai). (AD 

1=2 

Here, H corresponds to a somewhat arbitrary 20 km 
height of the atmosphere, /ix equals 0.15 km, and the ht 

and a,- in the second term on the right-hand side of Eq. 
(AD are obtained from standard tables22 [a1 is just the in- 
tegral of C„2(/i) over the lowest 300 meters of the atmo- 
sphere normalized to C2(h 1)]. Table 1 shows the values 
of hi determined by Gauss-Legendre quadrature for a 
four-screen model and a five-screen model. It should be 
noticed that the lowest phase screen is always placed at 
an altitude of 150 m to ensure sampling of boundary layer 
turbulence. (While this may not be particularly crucial for 
an investigation of stellar scintillation, it nevertheless 
seemed prudent to account for it in the simulation.) The 
strength of turbulence for the various phase screens may 
then be parameterized by a set of Fried parameters {r0ii}: 

■5/3 _ 0A23k2aiCn
2(hi). (A2) 

Once the {/•„,} is determined, a set of random phase 
screens is generated with Fried's methodology.23 Briefly, 
on a square M X M pixel screen we generate M2 mean- 
zero, delta-correlated, Gaussian random variables, 
w(mx,my) = w(m), with a variance of a2. The two- 
dimensional discrete Fourier transform of w(m), W( rj), is 
then multiplied by\rft~WG (except at \v\ = 0, where W(.ij) 
is set equal to zero) to produce a random field with a Kol- 
mogorov spectrum. Taking the inverse Fourier trans- 
form of W( rj)\rr\~UK yields öm^m), the random phase 
field with uncorrected tip and tilt (to be discussed below). 
The variance a2 is chosen so that the structure function 
associated with tf-n^dn) matches that determined by the 
Fried parameter roi: aL = CM(L/roi)

5/6, where L is 
the length of the phase screen and C = 0.1513128. 

Table 1.   Altitudes of Phase Screens 

Screen Number     h-, for 4-Screens [km]     A; for 5-Screens [km] 

0.15 
2.52 

10.15 
17.78 

0.15 
1.67 
6.80 

13.5 
18.63 

In generating the random phase field, %.E(m), we em- 
ploy a screen of finite size. However, strict homogeneity 
of the random field requires a screen of infinite dimen- 
sion, implying that the lowest-order Fourier components 
of (9TrE(m) (i.e., tip and tilt) are likely to be in error. A 
similar problem exists in the simulation of a random time 
series, where initiation of the series results in a nonsta- 
tionary random process.24 Fried corrects this error by 
subtracting the incorrect tip and tilt from dy^im) and 
then adding a statistically appropriate degree of tip and 
tilt: 

0(m, hi) = #TTE(m) 

/ M \ I M  - 
- ß- (m- -I) + yg- (m- —I 

(A3) 

Here, (9(m, /i,) is the random phase screen employed in 
the computations, I is a unit vector, g is a normal random 
vector (with mean-zero and unit-variance components), y 
is the standard deviation of the statistically appropriate 
tip and tilt vector, and ß is the erroneous tip and tilt vec- 
tor: 

12 
M 

ß= M2{M2- l)i?i 
(M + 1) 

I)i%E(m). 

(A4) 

Fried derives the statistically appropriate variance of tip 
and tilt from the phase structure function: y; 

=  2.610111/M(L/rO],)
5/6. 

Though the methodology of Fried ensures that each 
phase screen can approximate an appropriate stochastic 
scalar field, Knepp25 has pointed out that numerical as- 
pects of the simulation problem must also be considered 
in order to obtain realistic results. From the form of the 
phase structure function for the ith screen, we have 
DgJSr) = 6.884(<57-/r0,)

5/3, where Sr is the phase 
screen's pixel size: Sr = LIM. Clearly, if the screen is 
to accurately represent turbulent refractive index fluctua- 
tions, then the phase variations from pixel to pixel should 
be less than 90°. We achieve this constraint by requiring 
Dei{2Sr) < (n/2)2, which implies an upper bound on Sr 
that is determined by the r0>i. Since /•„_,- is always larger 
than r0, where r„"5/3 = 2,r0,f

5/3, we get a criterion for 
the pixel size: Sr <(r„/2)( TT

2
/27.54)

3/5
; this may be called 

the structure-function criterion on the pixel size. Addi- 
tionally, if scintillation in the saturation regime is to be 
accurately simulated, then the pixel size should also be 
less than the Fresnel length associated with interscreen 
propagation: Sr < |(\Az,,)y2, where AzK is the smallest 
interscreen distance; this may be called the interscreen- 



Fresnel-length criterion on the pixel size. The smaller of 
these two criteria places an upper limit on the pixel size. 
In the present simulations, we found that the upper 
bound on Sr for the HA profile was determined by the 
interscreen-Fresnel-length criterion, and was relatively 
insensitive to our wind speed changes in turbulence. 
However, for the HV-21 profile, Sr was primarily deter- 
mined by the structure-function criterion and did change 
with F from a maximum of 0.4 cm to a minimum of 0.3 
cm. Note that as a general rule the structure-function 
criterion scales like \m, whereas the interscreen-Fresnel- 
length criterion scales like (X/Ns)

y'z. 
In addition to an upper bound on the pixel size, there is 

also a lower bound. As mentioned above, wave propaga- 
tion between phase screens is accomplished by Fourier 
transform and the Fresnel approximation. Specifically, 
if i//(h) is the two-dimensional Fourier transform of the 
field at h, then 

i//(ho) = (//(/!,) exp 
I'K

2
(/II - h2) 

2k 
(A5) 

where K is the magnitude of spatial frequency. As the 
values of K are discrete in the simulation (i.e., Km 

= mv/L, m = 1, 2,...M), an accurate description of 
propagation with use of the Fourier transformation re- 
quires that the difference in phase associated with the 
two largest values of K be small compared with TT. 

M2Tr*Az      (M - 1)
2

TT
2
AZ 

2kL- 2kL'2 
<   77, (A6) 

where \z = (kx - h2). When we define AzL as the larg- 
est separation between phase screens, Eq. (7) results in a 
lower bound on 8,.: Sr > {WzLl2M)m. Note that to- 
gether, the upper and lower bounds on Sr constrain the 
range of investigations that may be performed for a given 
number of pixels, M. Under conditions where the upper 
bound on Sr is determined by the interscreen-Fresnel- 
length criterion, M must be greater than (2AzL/Azs), 
whereas under conditions where Sr's upper bound is fixed 
by the structure-function criterion, M must be greater 
than (6.85KAzi,/r„2). If these constraints on M are vio- 
lated, then there is no value of Sr that satisfies both the 
upper and lower bounds, and calculation can proceed only 
with an increased value of M. 

Finally, because of the finite size of the phase screen, 
the Fourier transform of the propagated field is periodic, 
and this can lead to spurious interference effects near the 
screens' edges. To clarify this problem, define 
E(p^~e ,hx) as a field element at the plus or minus trans- 
verse side of an upper-altitude phase screen. Due to the 
turbulent eddies in the upper screen, the plus field ele- 
ment may (for example) scatter outside the footprint of a 
lower-altitude screen, whereas the minus field element 
may stay within the footprint. However, as a conse- 
quence of the Fourier transform's periodic nature, the 
plus field element is not lost in the calculation but reap- 
pears at the opposite edge of the lower-altitude screen as 
a      spurious       field       element       [i.e.,     _£(pe

+
dge, hx) 

~ S.p(p^Be. h2), while £(p;dfre, M-^Prige. M- 
The total field at the minus side of the lower-altitude 
screen is the sum of the propagated minus-side field ele- 

ment plus the spurious field element: E(pedge, h2) 
= E(p^,h2)+ Esp(p;dea, h2). Since the field ele- 
ments at opposite edges of a screen should be only weakly 
correlated (if at all), this effect not only results in spuri- 
ous partial destructive interference at the screen edges 
but also introduces a spurious correlation into the propa- 
gated field at the screen edges. To guard against these 
edge effects, we first estimate the interscreen scattering 
angle for propagation from screen i to screen i + 1, 
SL: sin(<&) = (kso4y\ where s„,,- is defined by DvJs0) 
= 1. The range in transverse dimension near the 
i + 1 screen's edge that is corrupted by periodicity 
of the Fourier transform is then approximately 
(hi - Ai + iXAs,,.;)"1. Adding the corrupted ranges for all 
the screens provides an apodizing radius, r„ , at the tele- 
scope aperture: ra - L/2 - SJJIJ (hi - hi + i)/ks0j. As 
long as 2ra is larger than the telescope aperture's diam- 
eter, these edge effects should have little influence on the 

results. 
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